今天给各位分享高一年级必修一数学知识点归纳的知识,其中也会对高一年级必修一数学知识点归纳进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文导读目录:

1、高一数学必修1知识点总结

2、高一年级必修一数学知识点归纳

  集合的运算   运算类型交 集并 集补 集   定义域 R定义域 R   值域>0值域>0   在R上单调递增在R上单调递减   非奇非偶函数非奇非偶函数   函数图象都过定点(0,1)函数图象都过定点(0,1)   注意:利用函数的单调性,结合图象还可以看出:   (1)在[a,b]上, 值域是 或 ;   (2)若 ,则 ; 取遍所有正数当且仅当 ;   (3)对于指数函数 ,总有 ;   二、对数函数   (一)对数   1.对数的概念:   一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)   说明:○1 注意底数的限制 ,且 ;   ○2 ;   ○3 注意对数的书写格式.   两个重要对数:   ○1 常用对数:以10为底的对数 ;   ○2 自然对数:以无理数 为底的对数的对数 .   指数式与对数式的互化   幂值 真数   = N = b   底数   指数 对数   (二)对数的运算性质   如果 ,且 , , ,那么:   ○1 + ;   ○2 - ;   ○3 .   注意:换底公式: ( ,且 ; ,且 ; ).   利用换底公式推导下面的结论:(1) ;(2) .   (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式   (二)对数函数   1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).   注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.   ○2 对数函数对底数的限制: ,且 .   2、对数函数的性质:   a>100时,开口方向向上,a0时,抛物线向上开口;当a1,且∈_.   当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).   当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。   注意:当是奇数时,当是偶数时,   2.分数指数幂   正数的分数指数幂的意义,规定:   0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   3.实数指数幂的运算性质   (二)指数函数及其性质   1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.   注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质   【函数的应用】   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:   方程有实数根函数的图象与轴有交点函数有零点.   3、函数零点的求法:   求函数的零点:   1(代数法)求方程的实数根;   2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数.   1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   3)△0时,反比例函数图像经过一,三象限,是减函数   当K2的解集是{x?R|x—3>2}或{x|x—3>2}   4、集合的分类:   1、有限集含有有限个元素的集合   2、无限集含有无限个元素的集合   3、空集不含任何元素的集合例:{x|x2=—5}   知识点2   I、定义与定义表达式   一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c   (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0时,抛物线向上开口;当a0),对称轴在y轴左;   当a与b异号时(即ab0时,抛物线与x轴有2个交点。   Δ=b’2—4ac=0时,抛物线与x轴有1个交点。   Δ=b’2—4ac0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。   (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。   (3)△2},{x|x-3>2}   3)语言描述法:例:{不是直角三角形的三角形}   4)Venn图:   4、集合的分类:   (1)有限集含有有限个元素的集合   (2)无限集含有无限个元素的集合   (3)空集不含任何元素的集合例:{x|x2=-5}   2、高一数学知识点总结:集合间的基本关系   1.“包含”关系—子集   注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。   反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A   2.“相等”关系:A=B(5≥5,且5≤5,则5=5)   实例:设A={x|x2   -1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A   ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)   ③如果A?B,B?C,那么A?C   ④如果A?B同时B?A那么A=B   3.不含任何元素的集合叫做空集,记为Φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集。   有n个元素的集合,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的集合叫做空集。   3、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集   关于集合的概念:   (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。   (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。   (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。   集合可以根据它含有的元素的个数分为两类:   含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。   非负整数全体构成的集合,叫做自然数集,记作N;   在自然数集内排除0的集合叫做正整数集,记作N+或N;   整数全体构成的集合,叫做整数集,记作Z;   有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)   实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)   1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.   有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。   例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.   无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.   2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。   例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”   而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为   {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},   大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。   一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}   它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。   例如:集合A={x∈R│x2-1=0}的特征是X2-1=0   圆的方程定义:   圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的`定形条件。   直线和圆的位置关系:   1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。   ①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ0,则a可以是任意实数;   排除了为0这种可能,即对于x0的所有实数,q不能是偶数;   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。   指数函数   (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。   (2)指数函数的值域为大于0的实数集合。   (3)函数图形都是下凹的。   (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6)函数总是在某一个方向上无限趋向于X轴,永不相交。   (7)函数总是通过(0,1)这点。   (8)显然指数函数无界。   奇偶性   定义   一般地,对于函数f(x)   (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。   (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。   (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。   (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。   考点要求:   1、几何体的展开图、几何体的三视图仍是高考的热点。   2、三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势。   3、重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型。   4、要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。   知识结构:   1、多面体的结构特征   (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。   正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的'直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。   (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。   正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。   (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。   2、旋转体的结构特征   (1)圆柱可以由矩形绕一边所在直线旋转一周得到。   (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。   (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。   (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。   3、空间几何体的三视图   空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。   三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。   4、空间几何体的直观图   空间几何体的直观图常用斜二测画法来画,基本步骤是:   (1)画几何体的底面   在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。   (2)画几何体的高   在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。   数学期中考试已结束了。从考试的结果看与事前想法基本吻合。考试前让学生做的一些事情从成绩上看都或多或少有了一定的效果。现将考前考后的一些东西总结。   (1)考试的内容:   本次考试主要考查内容为高中数学必修5三角、不等式及数列部分,必修2立体几何部分   从卷面上看,必修5中的部分占25%。立体几何占75%,,总体偏重最近讲的立体几何。   (2)考试卷面题型分析。   卷面上只有选择、填空和解答三种题型。   选择题得分偏低,主要是对于学习过去时间比较长的三角数列不等式忘记的比较多,填空题有得分比较容易的两题,剩余两题难度较大。解答题前四道是立体几何讲的几个比较重要的知识点的考查,后两道是三角和数列。   (3)考试成绩分析与反思   从考试结果看,平时学习踏实的,数学基础好些的学生基本上考出较好成绩,平时学习不认真,基础较差的成绩都不太理想。针对本次考试结果,反思本人的教学行为更应该做好这几项工作:   第一、必须每天都扎实在做好备课与辅导工作。努力提高课堂效率,课前将学生定时定量应知应会的东西整理好,在课堂上比较流畅的讲解,适当控制好学生的学习行为。   第二、辅导工作要加强,在课后了解学生的学情,了解他们掌握知识的情况,个别辅导的工作要在课后做好。   第三、自己要独立思考,哪些东西讲,哪些东西不讲,哪些先讲,哪些后讲要根据学情做到心中有数,在适当的时间提出适当的问题。   第四、引导学生学会学习我们所教的学生基础比较差,不会学习,不会找问题,不会独立地进行有质量的思考是常见的事。要让他们首先掌握基本知识点,让他们逐步学会独立思考,提出有质量的问题,自己解决一些常见的基本问题,这样有助于提高学生的成绩。   立体几何初步   柱、锥、台、球的结构特征   棱柱   定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。   分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。   表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。   几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。   棱锥   定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。   分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等   表示:用各顶点字母,如五棱锥   几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。   棱台   定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。   分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等   表示:用各顶点字母,如五棱台   几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点   圆柱   定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。   几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。   圆锥   定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。   几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。   圆台   定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分   几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。   球体   定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体   几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。   NO.2空间几何体的三视图   定义三视图   定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)   注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;   俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;   侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。   NO.3空间几何体的直观图——斜二测画法   斜二测画法   斜二测画法特点   ①原来与x轴平行的线段仍然与x平行且长度不变;   ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。   直线与方程   直线的倾斜角   定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α0,则a可以是任意实数;   排除了为0这种可能,即对于x0的所有实数,q不能是偶数;   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。   平面向量   向量:既有大小,又有方向的量.   数量:只有大小,没有方向的量.   有向线段的三要素:起点、方向、长度.   零向量:长度为的向量.   单位向量:长度等于个单位的向量.   相等向量:长度相等且方向相同的向量   &向量的运算   加法运算   AB+BC=AC,这种计算法则叫做向量加法的三角形法则。   已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。   对于零向量和任意向量a,有:0+a=a+0=a。   |a+b|≤|a|+|b|。   向量的加法满足所有的加法运算定律。   减法运算   与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量   (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。   数乘运算   实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。   设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。   向量的加法运算、减法运算、数乘运算统称线性运算。   向量的数量积   已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。   a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。   两个向量的数量积等于它们对应坐标的乘积的和。   【(一)、映射、函数、反函数】   1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。   2、对于函数的概念,应注意如下几点:   (1)掌握构成函数的三要素,会判断两个函数是否为同一函数。   (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。   (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。   3、求函数y=f(x)的反函数的一般步骤:   (1)确定原函数的值域,也就是反函数的定义域;   (2)由y=f(x)的解析式求出x=f—1(y);   (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。   注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。   ②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。   【(二)、函数的解析式与定义域】   1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:   (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;   (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:   ①分式的分母不得为零;   ②偶次方根的被开方数不小于零;   ③对数函数的真数必须大于零;   ④指数函数和对数函数的底数必须大于零且不等于1;   ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。   应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。   (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。   已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。   2、求函数的解析式一般有四种情况   (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。   (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。   (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。   (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。   【(三)、函数的值域与最值】   1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:   (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。   (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。   (3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。   (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。   (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。   (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。   (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。   (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。   2、求函数的最值与值域的区别和联系   求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。   如函数的值域是(0,16],值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。   3、函数的最值在实际问题中的应用   函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。   【(四)、函数的奇偶性】   1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。   正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。   2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:   注意如下结论的运用:   (1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;   (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;   (3)奇偶函数的复合函数的奇偶性通常是偶函数;   (4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。   3、有关奇偶性的几个性质及结论   (1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。   (2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。   (3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。   (4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。   (5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。   (6)奇偶性的推广   函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。   【(五)、函数的单调性】   1、单调函数   对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数。   对于函数单调性的定义的理解,要注意以下三点:   (1)单调性是与“区间”紧密相关的概念。一个函数在不同的区间上可以有不同的单调性。   (2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替。   (3)单调区间是定义域的子集,讨论单调性必须在定义域范围内。   (4)注意定义的两种等价形式:   设x1、x2∈[a,b],那么:   ①在[a、b]上是增函数;   在[a、b]上是减函数。   ②在[a、b]上是增函数。   在[a、b]上是减函数。   需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零。   (5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。   5、复合函数y=f[g(x)]的单调性   若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减。简称“同增、异减”。   在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程。   6、证明函数的单调性的方法   (1)依定义进行证明。其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论。   (2)设函数y=f(x)在某区间内可导。   如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。   【(六)、函数的图象】   函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。   求作图象的函数表达式   与f(x)的关系   由f(x)的图象需经过的变换   y=f(x)±b(b>0)   沿y轴向平移b个单位   y=f(x±a)(a>0)   沿x轴向平移a个单位   y=—f(x)   作关于x轴的对称图形   y=f(|x|)   右不动、左右关于y轴对称   y=|f(x)|   上不动、下沿x轴翻折   y=f—1(x)   作关于直线y=x的对称图形   y=f(ax)(a>0)   横坐标缩短到原来的,纵坐标不变   y=af(x)   纵坐标伸长到原来的|a|倍,横坐标不变   y=f(—x)   作关于y轴对称的图形   【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。   ①求证:f(0)=1;   ②求证:y=f(x)是偶函数;   ③若存在常数c,使求证对任意x∈R,有f(x+c)=—f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由。   思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法。   解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1。   ②令x=0,则有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),这说明f(x)为偶函数。   ③分别用(c>0)替换x、y,有f(x+c)+f(x)=   所以,所以f(x+c)=—f(x)。   两边应用中的结论,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),   所以f(x)是周期函数,2c就是它的一个周期。   幂函数的性质:   对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:   首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:   排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;   排除了为0这种可能,即对于x0的所有实数,q不能是偶数;   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。   总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;   如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。   在x大于0时,函数的值域总是大于0的实数。   在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。   而只有a为正数,0才进入函数的值域。   由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.   可以看到:   (1)所有的图形都通过(1,1)这点。   (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。   (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。   (4)当a小于0时,a越小,图形倾斜程度越大。   (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。   (6)显然幂函数无界。   解题方法:换元法   解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。   换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化。   它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。   本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中点、线、面之间的位置关系,点、线、面的位置关系是立体几何的主要研究对象,同时也是空间图形最基本的几何元素.   重难点知识归纳   1、平面   (1)平面概念的理解   直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.   抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.   (2)平面的表示法   ①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.   ②字母表示:常用等希腊字母表示平面.   (3)涉及本部分内容的符号表示有:   ①点A在直线l内,记作; ②点A不在直线l内,记作;   ③点A在平面内,记作; ④点A不在平面内,记作;   ⑤直线l在平面内,记作; ⑥直线l不在平面内,记作;   注意:符号的使用与集合中这四个符号的使用的区别与联系.   (4)平面的基本性质   公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.   符号表示为:.   注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.   公理2:过不在一条直线上的三点,有且只有一个平面.   符号表示为:直线AB存在唯一的平面,使得.   注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.   公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.   符号表示为:.   注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.   公理的推论:   推论1:经过一条直线和直线外的一点有且只有一个平面.   推论2:经过两条相交直线有且只有一个平面.   推论3:经过两条平行直线有且只有一个平面.   2.空间直线   (1)空间两条直线的位置关系   ①相交直线:有且仅有一个公共点,可表示为;   ②平行直线:在同一个平面内,没有公共点,可表示为a//b;   ③异面直线:不同在任何一个平面内,没有公共点.   (2)平行直线   公理4:平行于同一条直线的两条直线互相平行.   符号表示为:设a、b、c是三条直线,.   定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.   (3)两条异面直线所成的角   注意:   ①两条异面直线a,b所成的角的范围是(0°,90°].   ②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.   ③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:   (i)在空间任取一点,这个点通常是线段的中点或端点.   (ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.   (iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围.   3.空间直线与平面   直线与平面位置关系有且只有三种:   (1)直线在平面内:有无数个公共点;   (2)直线与平面相交:有且只有一个公共点;   (3)直线与平面平行:没有公共点.   4.平面与平面   两个平面之间的位置关系有且只有以下两种:   (1)两个平面平行:没有公共点;   (2)两个平面相交:有一条公共直线.   1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:   解析式   顶点坐标   对称轴   y=ax^2   (0,0)   x=0   y=a(x-h)^2   (h,0)   x=h   y=a(x-h)^2+k   (h,k)   x=h   y=ax^2+bx+c   (-b/2a,[4ac-b^2]/4a)   x=-b/2a   当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,   当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;   当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;   当h0时,开口向上,当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0   (a≠0)的两根.这两点间的距离AB=|x?-x?|   当△=0.图象与x轴只有一个交点;   当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a0,直线和圆相交、②Δ=0,直线和圆相切、③Δ0,则a可以是任意实数;   排除了为0这种可能,即对于x0的所有实数,q不能是偶数;   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。   指数函数   (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。   (2)指数函数的值域为大于0的实数集合。   (3)函数图形都是下凹的。   (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6)函数总是在某一个方向上无限趋向于X轴,永不相交。   (7)函数总是通过(0,1)这点。   (8)显然指数函数无界。   奇偶性   定义   一般地,对于函数f(x)   (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。   (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。   (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。   (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。   1、集合的概念   集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。   对象――即集合中的元素。集合是由它的元素确定的。   整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。   确定的――集合元素的确定性――元素与集合的“从属”关系。   不同的――集合元素的互异性。   2、有限集、无限集、空集的意义   有限集和无限集是针对非空集合来说的。我们理解起来并不困难。   我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。   几个常用数集N、N_N+、Z、Q、R要记牢。   3、集合的表示方法   (1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:   ①元素不太多的有限集,如{0,1,8}   ②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100}   ③呈现一定规律的无限集,如{1,2,3,…,n,…}   ●注意a与{a}的区别   ●注意用列举法表示集合时,集合元素的“无序性”。   (2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。   4、集合之间的关系   ●注意区分“从属”关系与“包含”关系   “从属”关系是元素与集合之间的关系。   “包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用等符号,会用Venn图描述集合之间的关系是基本要求。   ●注意辨清Φ与{Φ}两种关系。   集合的有关概念   1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素   注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。   ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。   ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件   2)集合的表示方法:常用的有列举法、描述法和图文法   3)集合的分类:有限集,无限集,空集。   4)常用数集:N,Z,Q,R,N   子集、交集、并集、补集、空集、全集等概念   1)子集:若对x∈A都有x∈B,则AB(或AB);   2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)   3)交集:A∩B={x|x∈A且x∈B}   4)并集:A∪B={x|x∈A或x∈B}   5)补集:CUA={x|xA但x∈U}   注意:A,若A≠?,则?A;   若且,则A=B(等集)   集合与元素   掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。   子集的几个等价关系   ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;   ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。   交、并集运算的性质   ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;   ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;   有限子集的个数:   设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。   练习题:   已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系   A)M=NPB)MN=PC)MNPD)NPM   分析一:从判断元素的共性与区别入手。   解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}   对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。  【导语】同学们学任何一门科目,都不能只有三分钟热度,而要一鼓作气,天天坚持,©无忧考网为各位同学整理了《高一年级必修一数学知识点归纳》,希望对你的学习有所帮助!   1.高一年级必修一数学知识点归纳 篇一   求函数值域   (1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;   (2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;   (3)、判别式法:   (4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;   (5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;   (6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;   (7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;   (8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;   (9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。   2.高一年级必修一数学知识点归纳 篇二   集合与元素   一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。   例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;   而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。   班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。   解集合问题的关键   解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。   3.高一年级必修一数学知识点归纳 篇三   1.函数的奇偶性   (1)若f(x)是偶函数,那么f(x)=f(-x);   (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);   (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);   (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;   (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;   2.复合函数的有关问题   (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。   (2)复合函数的单调性由“同增异减”判定;   3.函数图像(或方程曲线的对称性)   (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;   (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;   (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);   (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;   (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;   (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;   4.高一年级必修一数学知识点归纳 篇四   函数的值域   求函数值域的方法:   ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;   ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;   ③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;   ④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);   ⑤单调性法:利用函数的单调性求值域;   ⑥图象法:二次函数必画草图求其值域;   ⑦利用对号函数   ⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数   5.高一年级必修一数学知识点归纳 篇五   【函数的应用】   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:   方程有实数根函数的图象与轴有交点函数有零点.   3、函数零点的求法:   求函数的零点:   (代数法)求方程的实数根;   (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数.   1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一年级必修一数学知识点归纳的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一年级必修一数学知识点归纳高一年级必修一数学知识点归纳的信息别忘了在本站进行查找喔。

未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处

原文地址:http://www.zwdbk.com/post/7388.html发布于:2025-12-17